Department of Geology Sri Dev Suman Uttarakhand University Badshahithaul, Tehri Garhwal

5

SYLLABUS of Geology for First Three Years of Higher Education UG - Geology SYLLABUS

(Under National Education Policy-2020)

2022

BOARD OF STUDIES (BOS) IN Geology (Under NEP-2020) Faculty of Science Sri Dev Suman Uttarakhand University, Badshahithaul, Tehrl Garhwal

Proceedings of BOS Date: 1

Date: 10-08-2022

A meeting of BOS in Geology under the Faculty of Science was held on 10-08-2022 at Pt. L.M.S. Campus, Rishikesh, Sri Dev Suman Uttarakhand Univ. from 10:45 AM onwards. During the inauguration programme, members were welcomed and introduced.

AGENDA & RESOLUTION OF THE MEETING

Agenda Item	Resolution
 Approval of the common minimum syllabus of UG-Geology under NationalEducation Policy-2020 	 Following discussion, members/experts approved the common minimum syllabus of UG-Geology under National Education Policy-2020
	 B.Sc. I Semester, Physical and Structural Geology, Topic-Land forms of India in nut shell was added in Unit: II B.Sc. III Semester, Petrology, Topic- facies was added in Unit-II

Following members were present in the meeting-

MEMBERS

(A) Departmental

S.N.	Name	Designation	Institute	Signature
1	Dr. Srikrishna Nautiyal	Asst. Prof. &	Pt.L.M.S. Campus, Rishikesh, SDSU Univ.	the
		Head	,	0 218

(B) Director From Research Institute

S.N.	Name	Designation	Institute	Signature
1	Dr. Durgesh Pant	Director	UCOST, Dehradun	

(C) Experts from other Institutions

S.N.	Name & Designation	Category of Member	Institute	Signature
1	Dr.D.C. Nainwal Prof. & Principal	Invited Principal	Govt. PG College, Dolwala	Der 10/22
2	Dr. Renu Negi Prof. & Principal	Invited Principal	Govt. PG College, New Tehri	Jan 19/08/2022
3	Dr. Devesh Bhatt Prof. & Principal	Invited Principal	Govt. Degree College, Bedikhal	Dref Cho Polo La
4	Dr. V.K. Khanduri Prof. & Dean	VC Nominee	Horticulture University, Ranichauri, Tehri Garhwal	
5	Dr. A.A. Baurai Prof. & Director	VC Nominee	SRT Campus, Badshahithaul, Tehri Garhwal	
6	Dr. J.P. Bhatt Professor (Rtd.)	VC Nominee	Dept. of Zoology, HNB Garhwal Univ., Srinagar	2 W 237

BOARD OF STUDIES (BOS) IN GEOLOGY Faculty of Science Sri Dev Suman Uttarakhand University

MEMBERS

(A) Departmental

S.N.	Name	Designation	Institute	Signature
1	Dr. Srikrishna Nautiyal	Asst. Prof. & Head	Pt.L.M.S. Campus, Rishikesh, SDSU Univ.	Ky
				18/81

(B) Director From Research Institute

S.N.	Name	Designation	Institute	Signature
1	Dr. Durgesh Pant	Director	UCOST, Dehradun	

(C) Experts from other Institutions

S.N.	Name & Designation	Category of	Institute	Signature
		Member		Λ
1	Dr.D.C. Nainwal	Invited	Govt. PG College,	04/30/20
	Prof. & Principal	Principal	Doiwala	201 10/11-
2	Dr. Renu Negi	Invited	Govt. PG College,	San (2)2022
	Prof. & Principal	Principal	New Tehri	01000
3	Dr. Devesh Bhatt	Invited	Govt. Degree	malan show
	Prof. & Principal	Principal	College, Bedikhal 🤇	Diskar Bishar
4	Dr. V.K. Khanduri	VC Nominee	Horticulture	
	Prof. & Dean		University,	
			Ranichauri, Tehri	
			Garhwal	
5	Dr. A.A. Baurai	VC Nominee	SRT Campus,	
	Prof. & Director		Badshahithaul,	
			Tehri Garhwal	
6	Dr. J.P. Bhatt	VC Nominee	Dept. of Zoology,	
	Professor (Rtd.)		HNB Garhwal	0108/202
			Univ., Srinagar	101081202

Sr.No.	Name & Designation		
1.	Prof. N.K. Joshi Vice-Chancellor , Kumaun University Nainital	Chairman	
2.	Prof. O.P.S. Negi Vice-Chancellor, Uttarakhand Open University	Member	
3.	Prof. P. P. Dhyani Vice-Chancellor , Sri Dev Suman Uttarakhand University	Member	
4.	Prof. N.S. Bhandari Vice-Chancellor, Soban Singh Jeena University Almora	Member	
5.	Prof. Surekha Dangwal Vice-Chancellor, Doon University, Dehradun	Member	
6.	Prof. M.S.M. Rawat Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	Member	
7.	Prof. K. D. Purohit Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	Member	

Curriculum Design Committee, Uttarakhand

S.N.	Name	Designation	Department	Affiliation
1.	Dr. Pradeep Goswami	Professor & Head	Center of Advanced Study, Department of Geology	Kumaun University, Nainital
2.	Dr. Santosh Kumar	Professor	Center of Advanced Study, Department of Geology	Kumaun University, Nainital
3.	Dr. Rajeev Upadhya	Professor	Center of Advanced Study, Department of Geology	Kumaun University, Nainital
4.	Dr. SrikrishnaNautiyal	Assistant Professor	Department of Geology	Pt. Lalit Mohan Sharma Campus Sri Dev Suman Uttarakhand University, Chamba, Tehri Garhwal
5.	Dr. Manish Sanguri	Guest Faculty	Center of Advanced Study, Department of Geology	Kumaun University, Nainital

Expert Committee

Syllabus Preparation Committee

S.N.	Name	Designation	Department	Affiliation
1.	Dr. Pradeep Goswami	Professor & Head	Center of Advanced Study, Department of Geology	Kumaun University, Nainital
2.	Dr. Santosh Kumar	Professor	Center of Advanced Study, Department of Geology	Kumaun University, Nainital
3.	Dr. G. K. Sharma	Professor	Center of Advanced Study, Department of Geology	Kumaun University, Nainital
4.	Dr. Rajeev Upadhyay	Professor	Center of Advanced Study, Department of Geology	Kumaun University, Nainital
5.	Dr. Deepa Arya	Assistant Professor	Center of Advanced Study, Department of Geology	Kumaun University, Nainital
6.	Dr. Ashok Kumar	Guest Faculty	Center of Advanced Study, Department of Geology	Kumaun University, Nainital
7.	Dr. Manish Sanguri	Guest Faculty	Center of Advanced Study, Department of Geology	Kumaun University, Nainital

PROGRAMME PREREQUISITES

Any student who has passed intermediate Science with Mathematics/Biology group or equivalent examination can opt for geology in Six Semester B.Sc. programme (undergraduate level). He/she should have keen interest in understanding the earth forming processes through time and aptitude for geoscientific study and research.

Candidates who have passed the three-year B.Sc. examination from any recognised university including Kumaun University or equivalent examination of other universities with Geology as one of the major subjects in all the three years can apply for admission to the **Four Semester M.Sc. Programme**in Geology.

PROGRAMME INTRODUCTION

Geology is an ever advancing and most popular branch of pure and applied science amongst the students having keen interest and curiosity in understanding the origin, evolution, nature, composition, structure and processes of the Earth and its environs through time. The identification of minerals, rocks, and fossils provide insights into the age, composition, structure, and paleoenvironment of the Earth, and life that thrived on it through the geological ages. This leads to understanding the physical processes of the Earth's spatio-temporal evolution and the availability of its natural resources and reserves. A thorough knowledge on various domains of geology is, thus, immensely useful in not only enriching our knowledge about various physical and historical aspects of the Earth's evolution and dynamics, but also in judiciously utilizing its precious natural resources as well as efficiently preventing or mitigating disasters that could be caused as a result of the Earth's powerful endogenic and exogenic processes.

The programme offers essentially the fundamental and advanced knowledge and technical skills on various domains of geology. Students would study core and applied aspects of, and recent technological advances in the subject field. The curriculum of the programme is designed in such a stepwise manner that the student can derive benefit at any stage of the programme even if the entire course is not completed; it begins with basic essential knowledge and gradually covers advanced aspects of the subject. At the end of every academic year, the student would have good knowledge of some basic and applied aspects of the subject, and this will keep on growing as the students proceeds further with the subject course. At a later stage of the course, the curriculum provides the student with an opportunity of carrying out field and/or laboratory based project work leading to a dissertation in a specialized domain of geology, which is actually a training of making a professional geologist competent in generating, analyzing, and synthesizing the data, to resolve geoscientific problems.

Candidates desirous to pursue their career in the fields of geoscience, disaster management, natural resource assessment and management, civil engineering construction projects, natural environment conservation, and allied fields can choose the offered courses in geology.

Year	Sem.	Course Code	Paper Title	Theory/ Practical	Credits
			CERTIFICATE COURSE IN SCIENCE		
	I		Physical & Structural Geology	Theory	04
FIRST			Physical & Structural Geology + Field work)	Practical	02
YEAR	II		Elements of Mineralogy & Gemology	Theory	04
			Mineralogy & Gemology	Practical	02
			DIPLOMA COURSE IN SCIENCE		
	III		Petrology	Theory	04
			Petrology + Field work	Practical	02
SECOND	IV		Palaeontology	Theory	04
YEAR			Practical (Palaeontology)	Practical	02
			BACHELOR OF SCIENCE	II	
	V	1	Economic Geology & Mineral Exploration	Theory	04
			Geohydrology & Environment Geology	Theory	04
THIRD			Economic & Exploration Geology + Field work	Practical	02
YEAR	VI		Remote Sensing & Elementary Engineering Geology	Theory	04
			Stratigraphy	Theory	04
			Remote Sensing + Stratigraphy	Practical	02
			BACHELOR (RESEARCH) OF SCIENCE		
	VII		Advanced Structural Geology	Theory	04
			Advanced Mineralogy	Theory	04
FOURTH			Geochemistry & Geochronology	Theory	04
YEAR			Geological Mapping	Field Training	04
			Practical	Practical	04
	VIII				04
			Igneous Petrology Metamorphic Petrology	Theory	
				Theory	04
			Sedimentology	Theory	04
			Fuel Geology	Theory	04
			Practical	Practical	04
			MASTER OF SCIENCE (GEOLOGY)	1	
	IX		Geodynamics	Theory	04
FIFTH			Tectonic Geomorphology	Theory	04
YEAR			Micropalaeontology& Oceanography	Theory	04
			Field & Laboratory techniques in Geology	Field Training	04
			Practical	Practical	04
	X		Applied Groundwater Hydrology	Theory	04
			Advanced Remote Sensing & GIS	Theory	04
			Project/Research Oriented Dissertation	Dissertation	08
			Practical	Practical	04

A

COURSE STRUCTURE (Year wise Structure of X semesters)

CBCS	pattern
------	---------

Year	Semester	Course type	Credits	Teaching hrs
		Discipal & Structural Geology	04	60
First	I	Physical & Structural Geology Practical (Physical & Structural Geology + Field work	02	60
	11	Elements of Mineralogy & Gemology	04	60
	II	Practical (Mineralogy & Gemology)	02	60
C 1	III	Petrology	04	60
Second	111	Practical (Petrology + Field work)	02	60
	IV	Palaeontology	04	60
	IV	Practical (Palaeontology)	02	60
TTL 1	V	Economic Geology & Mineral Exploration	04	60
Year First Second Third Fourth	v	Geohydrology & Environment Geology	04	60
		Practical (Economic & Exploration Geology + Field work	02	60
	VI	Remote Sensing & Elementary Engineering	04	60
		Geology Stratigraphy	04	60
		Practical (Remote Sensing + Stratigraphy	02	60
P di	VII	Advanced Structural Geology	04	60
Fourth	VII	Advanced Mineralogy	04	60
		Geochemistry & Geochronology	04	60
		Geological Mapping (Field training)	04	60
		Practical	04	60
	VIII	Igneous Petrology	04	60
	viii	Metamorphic Petrology	04	60
		Sedimentology	04	60
		Fuel Geology	04	60
		Practical	04	60
Fifth	IX	Geodynamics	04	60
Filti	1.4	Tectonic Geomorphology	04	60
		Micropalaeontology& Oceanography	04	60
		Field & Laboratory techniques in Geology	04	60
		(Field training)		
		Practical	04	60
	X	Applied Groundwater Hydrology	04	60
		Advanced Remote Sensing & GIS	04	60
		Project/Research Oriented Dissertation	08	120
		Practical	04	60

pr k

Semester I

Paper: Physical & Structural Geology

Course outcome: After successful completion of this course students will understand the origin of solar system, and dynamics of earth's surface and interiors, platetectonic processes, seismicity, and volcanism. They will be enhanced by the knowledge regarding formation of different landforms and the physical, chemical and biological processes operating upon the earth. After completing this course they will able to recognize and interpret the geological structures formed as a result of deformation.

	deron		
	Course type,		Teaching
	paper &		hours
	Credits,	Content	
	paper &		
	credit		
		Unit I: Introduction to geology and its scope, Earth and solar system: origin, size, shape, mass, density and its atmosphere. A brief account of various theories regarding the origin of the earth; Internal structure of the earth and its composition. Earth's gravity and magnetic fields, and thermal structure. Law of uniformitarianism.	15
	Theory		15
	Theory Physical & Structural Geology (04)	 Unit II: Earth's internal and external processes: The rock cycle. Earthquakes: nature of seismic waves, their intensity and magnitude; Volcanoes: types, products and causes of volcanism. Weathering and its types; Erosion, transportation and deposition by rivers, wind, glaciers, and waves and underground water, and their related landforms, land forming Tondra in multi- Unit III: Introduction to Structural Geology; basic concept of stress and strain. Elementary idea of bed, dip and strike; Outcrop, effects of various structures on outcrop. Clinometer/Brunton compass and its use. Elementary idea of types of deformation; Folds: nomenclature and types of folds. Unit IV: Faults: nomenclature, geometrical and genetic 	15 Juell 15
		classifications, normal, thrust and slip faults; Definition,	
\vdash		kinds and significance of joints and unconformity. Section A: Physical Geology: Study of important	(0
	Practical	 Section A: Physical Geology: Study of important geomorphological models; Reading topographical maps of the Survey of India; Identification of geomorphic features. Section B: Structural Geology: Identification of different types of folds/faults from block models; Exercises on structural 	60
	(02)	problems: preparation of cross section profile from a geological map.	
		Section C: Geological Field Training: Students will be required to carry out one week fieldwork in a suitable geological area to study the elementary aspects of field geology and submit a report thereon.	

AU

Suggested Reading:

- Arthur Holmes (1992). Principles of Physical Geology. Chapman and Hall, London.
- Miller (1949). An Introduction to Physical Geology. East West PressLtd.
- Spencer, E.V. (1962). Basic concepts of Physical Geology. Oxford &IBH.
- Mahapatra, G.B. (1994). A text book of Physical geology. CBSPublishers.
- Billings, M.P. (1972). Structural Geology. PrenticeHall.
- Davis, G.R. (1984). Structural Geology of Rocks and Region. JohnWiley
- Hills, E.S. (1963). Elements of Structural Geology. Farrold and Sons, London.
- Singh, R. P. (1995). Structural Geology, A Practical Approach. Ganga Kaveri Publ., Varanasi.

Suggested Online Link:

- <u>https://www.futurelearn.com/courses/extinctions-past-present/19/steps/1312906.</u>
- <u>https://www.mooc-list.com/course/mountains-101-coursera</u>
- <u>https://www.mooc-list.com/course/origins-formation-universe-solar-system-earth-and-life coursera</u>
- <u>https://www.mooc-list.com/course/science-solar-system-coursera</u>
- <u>https://www.mooc-list.com/course/planet-earth-and-you-coursera</u>
- https://www.mooc-list.com/course/dynamic-earth-course-educators-coursera
- https://www.classcentral.com/course/swayam-structural-geology-14312

Semester II

Paper: Elements of Mineralogy & Gemology

Course outcome: After completing this course, student will gain basic and fundamental knowledge about the various mineral groups with regard to their physical and optical properties along with an idea about crystal systems, their symmetryelements andnotation systems. Apart from this, basic knowledge about the instruments such as physical tools and polarizing microscope etc. will also be imparted. Basic knowledge about gemstones will be given to train the students in recognizing and using the semiprecious and precious minerals and gemstones, which make them a professional in geology and newly emerging medicinal gemology field of therapy.

	in geol		
	Course type,	Content	Teaching
	paper &		hours
	Credits		
		Unit I: Crystals and their characters: Crystal form, face, edge,	15
		solid angle; Interfacial angle and their measurements;	
		Crystallographic axes and angles. Crystal parameters,	
		Weiss and Miller system of notations. Symmetry	
		elements and description of normal class of Isometric,	
		Tetragonal, Hexagonal, Orthorhombic, Monoclinic and	
		Triclinic systems. Twinning and twin laws.	
		Unit II: Definition and characters of mineral; Chemical	15
		composition and diagnostic physical properties of	
		common rock forming minerals: quartz, feldspar,	•
	Theory	pyroxene, amphibole, garnet, olivine and mica families.	
		Unit III: Polarizing microscope, its parts and functioning;	15
	Elements of	Ordinary and polarized lights; Common optical	
	Mineralogy	properties of minerals observed under ordinary, polarized	
	& Gemology	lights and crossed nicols. Optical properties of some	
		common rock forming minerals (Quartz, Orthoclase,	
	(04)	Microcline, Olivine, Augite, Hornblende, Muscovite,	
		Biotite, Garnet).	
		Unit IV: Definition and scope of Gemology. Basic qualities of	15
		a gem, Physical properties, Optical properties & optical	
		effects in gemstones. Theory of gem cutting techniques,	
		& application crystallography in Gemology. Instruments	
		used in gem identification. Techniques, limitation and	
		precautions of gem identification.	
Γ		Study of physical properties of minerals such as Olivine,	60
		Garnet, Muscovite, Biotite, Beryl, Tourmaline, Hornblende,	
	Practical	Gypsum, and its varieties, Quartz and its varieties, Orthoclase,	
		Microcline, Plagioclase, Chalcedony, Barite, Augite,	
	(02)	Chalcedony, Agate, Jasper, Flint. Use of polarizing	
		microscope; Study of optical properties of common rock	
		forming minerals such as Olivine, Garnet, Muscovite, Biotite,	
		Hornblende, Tourmaline, Augite, Quartz, orthoclase,	
		Microcline, Plagioclase etc.	

Js/

Scanned with CamScanner

Suggested Reading:

- Berry, L.G., Mason, B. and Dietrich, R.V. (1982). Mineralogy. CBS Publ.
- Nesse, D.W. (1986). Optical Mineralogy. McGrawHill.
- Read, H.H. (1968). Rutley's Element of Mineralogy (Rev. Ed.). Thomas MurbyandCo.
- Berry and Mason (1961). Mineralogy. W.H. Freeman &Co.
- Sharma, R.S. and Sharma A. (2013). Crystallography and Mineralogy (Concepts and Methods). Geological Society of India, Bangalore.
- Hall, Cally (2000) Gemstones. Dorling Kindersley, London; New York.
- Liddicoat, Richard T. (1989) Handbook of Gem Identification. 12th ed., rev., Gemological Institute of America, Santa Monica, CA.
- Nassau, Kurt (1994) Gemstone Enhancement: History, Science and State of the Art. 2nd ed. Butterworth-Heinemann, London.
- Anderson, Basil W (1990) Gem Testing. Rev. by E. A. Jobbins. 10th ed., Butterworth, London.

Suggested Online Link:

<u>https://www.classcentral.com/course/swayam-subject-geology-paper-crystallography-mineralogy-17820</u>

Semester III

Paper Petrology

Course outcome: The prime aim of this course is to characterize, classify, and deduce the genesis of individual rock, and rocks in association making a rock suite or complex or succession. Students will characterize, identify and name different types of rocks in the field and in hand-specimens, and rock-thin sections, and finally they will propose the rock-forming processes (petrogenesis). The most common criteria are structure, texture, mineral assemblage and modes present in a particular rock that are examined at megascopic and microscopic levels.

at mega	iscopic and microscopic levels.		
Course type,	Content	Teaching	
paper &		hours	
Credits			
	Unit I: Introduction to igneous petrology; Magma: definition, composition, properties, types and origin; Plutonic, hypabyssal, and volcanic magma emplacement; Forms of igneous rocks; textures of igneous rocks. Reaction principle; Bowen's reaction series, Differentiation and Assimilation; Crystallization of uni-component and bi- component (mixed-crystals).Basic classification of igneous rocks; IUGS classification of igneous rocks. Detailed petrographic description of Granite,	15	
Theory	Granodiorite, Syenite, Diorite, Rhyolite and Basalt. Unit II: Introduction to metamorphic petrology; Process and	15	
Theory Petrology	products of metamorphism; Type of metamorphism. Factors, zones and grade of metamorphism; Textures, structures and classification of metamorphic rocks.	Jawes	
(04)	Petrographic details of some important metamorphic rocks, such as slate, schists, gneiss, quartzite, and marble.		
	Unit III: Introduction to sedimentary petrology; Processes of formation of sedimentary rocks. Clastic and non-clastic sedimentary rocks. Textures and structures of sedimentary rocks. Palaeocurrent and sediment dispersal.	15	
	Unit IV: Concept of provenance and basins. Elementary knowledge about continental and oceanic sedimentary basins. Concept of sedimentary environments and facies. Petrographic details of important siliciclastic and carbonate rocks such as-conglomerate, breccia, sandstone, shale, and limestone.	15	
Practical	Section A: Petrology: Study of common igneous, metamorphic and sedimentary rocks in hand specimen and thin sections. Study of common structures in igneous, metamorphic and sedimentary rocks.	60	
(02)	Section B: Geological Field Training : Students will be required to carry out one week fieldwork in a suitable geological area to study the elementary aspects of field geology and submit a report thereon.		

AL

Suggested Reading:

- Bose, M.K. (1997). Igneous petrology. World press.
- Ehlers, W.G. and Blatt, H. (1987). Petrology, Igneous, Sedimentary and Metamorphic rocks, CBS Publishers.
- Friedman and Sanders, (1978). Principles of Sedimentology. John Wiley and sons.
- Mason, R. (1978). Petrology of Metamorphic Rocks. CBS Publ.
- Moorhouse, W.W. (1969). The study of rocks in thin sections. Harper and sons.
- Pettijohn, F.J. (1975).Sedimentary rocks, Harper & Bros.3rdEd.
- Prasad, C. (1980).A text book of Sedimentology.
- Sengupta, S. (1997). Introduction to Sedimentology. Oxford-IBH.
- Turner, F.J. and Verhoogen, J. (1960). Igneous & Metamorphic petrology. McGraw Hill Co.
- Turner, F.J. (1980). Metamorphic petrology. McGraw Hill.
- Tyrell, G. W. (1989). Principles of Petrology. Methuren and Co (Students ed.).
- Winkler, H.G.C. (1967). Petrogenesis of Metamorphic Rocks. Narosa Publ.
- Blatt, H. and Tracy, R.J. (1996). Petrology (Igneous, Sedimentary, Metamorphic), W.H. Freeman & Co., New York

Suggested Online Link:

- <u>https://www.classcentral.com/course/swayam-petrology-14084</u>
- <u>https://www.mooc-list.com/course/myths-and-facts-about-rocks-iversity.</u>
- E- pathshala. <u>https://epgp.inflibnet.ac.in/</u>

Semester IV

Paper: Paleontology

Course outcome: This course intends to acquaint the students about origin and evolution of life through geological time and the major evolutionary breakthroughs, and to correlate the evolutionary history with other synchronous geological events. It would add to their knowledge regarding thebasicconceptofpaleontology using mode and methods of fossil preservation and species identification, thereafter suggesting theorganicevolutionary path and paleoenvironment. Also they will know the causes of major events of mass extinctions in geological past including the glaciations periods

Course type,	Content	Teaching
paper & Credits		hours
	Unit I: Origin of life. Organic evolution- Macro and Micro evolution, Punctuated Equilibrium and Phyletic Gradualism. Taxonomy and Species concept. Taphonomy. Mass extinctions and their causes. Ediacaran. Gondwana fauna and flora and their significance.	15
Theory	Unit II: Fossils, condition, modes of fossilization and its significance in geological time scale. Trace fossils and Ichno-fossils. Binomial nomenclature. Biozones- significance and correlation, Index fossils.	15
Paleontology (04)	Unit III: Invertebrate Paleontology- Morphology, classification, evolutionary trends, and geological distribution of Brachiopods, Lamellibranchs, Gastropods and Cephalopods, Trilobites, Graptolites, Echinoids and Corals.	15
	Unit IV: Vertebrate Paleontology- Origin of vertebrates and evolution of vertebrate. Evolutionary history of Equidae, Proboscidea and Hominidae. Origin, diversity and extinction of dinosaurs.	15
Practical (02)	Study of fossils showing various modes of preservation. Study of diagnostic morphological characters, systematic position, stratigraphic position and age of various invertebrate, vertebrate and plant fossils.	60

Suggested Reading:

- Raup, D. M., Stanley, S. M., Freeman, W. H. (1971). Principles of Paleontology.
- Clarkson, E. N. K. (2012). Invertebrate paleontology and evolution 4th Edition by Blackwell Publishing.
- Benton, M. (2009). Vertebrate paleontology. John Wiley & Sons.
- Shukla, A. C. and Misra, S. P. (1975). Essentials of paleobotany. Vikas Publisher.
- Moore, R.C. Lalliker, C.G. and Fischer, A.G. (1952). Text book of Invertebrate Palaeontology.
- Schrock, Twenhofel and Williams (1953). Principles of Invertebrate Palaeontology. CBS, Delhi Bilal U. Haq and A. Boersome, Introduction to Marine Micropalaeontology

Suggested Online Link:

https://www.futurelearn.com/courses/extinctions-past-present/19/steps/1312906.

Semester V

Paper I: Economic Geology & Mineral Exploration

Course outcome: The course is intended to impart basic knowledge about the occurrence and distribution of metallic and non-metallic ores and energy resources in India, and to understand ore-forming processes. The acquired knowledge of ore-formation indeed paved the way of developing methods of ore prospecting, exploration, mining, and beneficiation of economic deposits. This course will surely help the students for opting carrier in the field of mineral prospection, exploration, and mining industry.

Course type,	Content	Teaching
paper &	Content	hours
Credits		nours
Creuits	Unit I. Concert of a local state in a single and	15
	Unit I: Concept of ore and ore deposits, ore minerals and	15
	gangue minerals; Tenor of ores; Metallic and non-metallic	
	ore minerals; Strategic, Critical and essential minerals.	
	Ore forming processes: magmatic, contact metasomatic,	
	hydrothermal, sedimentary.	
	Unit II: Study of important metallic (Cu, Pb, Zn Mn, Fe, Au,	15
	Al) and non-metallic (industrial) minerals (gypsum,	
	magnesite, mica). Basic knowledge about the genesis of	
Theory	oil and natural gas, and coal. Metallogenic epochs and	
	provinces. Distribution of iron, copper, zinc, lead, gold,	
Paper I	diamond, uranium, bauxite, phospherite, magnesite, mica,	
1	coal, and oil and natural gas in India.	
Economic	Unit III: Mineral exploration: Surface and sub surface	15
Geology &	exploration methods including use of remote sensing	
Mineral	techniques, Elementary idea of geological, geophysical	
Exploration	and geo-botanical prospecting and mining methods.	
Exploration	Drilling, sampling and assaying.	
(04)	Unit IV: Elementary knowledge of geological and geophysical	15
(04)		15
	prospecting. Gravity, electrical, magnetic airborne and	
	seismic methods of exploration. Geo-botanical and	
	geochemical methods of exploration. Elementary idea of	
	mining and environmental considerations.	

Suggested Reading:

- Brown, C. and Dey, A.K. (1955). Indian Mineral Wealth. Oxford University
- Gokhale, K.V.G.K. and Rao, T.C. (1983). Ore Deposits of India. East West Press Pvt.Ltd.
- Jense, M.L. and Bateman A.M. (1981). Economic Mineral Deposits. John Wiley and Sons.
- Krishnnaswamy, S., 1979. India's Minerals Resources. Oxford and IBH Publ.
- Deb, S. (1980). Industrial minerals and Rocks of India. Allied Publishers Pvt.Ltd.
- Umeshwar Prasad (2003). Economic Geology. CBS Publishers and distributers.
- Sharma, N.L. and Ram, K.V.S. (1972). Introduction to India's Economic Minerals, Dhanbad.

- McKinstry, H.E. (1962). Mining Geology. II Ed. Asia Publishing House.
- · Clark, G.B. (1967). Elements of Mining. III Ed. John Wiley
- Arogyaswami, R.P.N. (1996). Courses in Mining Geology. IV Ed. Oxford IBH.
- · Umathi, Exploration Geology.

Suggested Online Link:

- https://www.mooc-list.com/course/minerals-and-mining-business-edx
- https://www.classcentral.com/course/swayam-drilling-and-blasting-technology-58442
- <u>https://www.classcentral.com/course/swayam-underground-mining-of-metalliferous-deposits-43673</u>

Paper II: Geohydrology & Environment Geology

Course outcome: This course has a direct implication on understanding and resolving the societal issues particularly dealing with groundwater and environment. The students will gain a better knowledge regarding groundwater occurring in the form of aquifers and surface waters, and the laws governing the recharge, storage, movement and exploitation. They will be enlightened as to how we the humans are part of our surrounding natural environment and how we should work for its preservation and sustainable development. This course will help making a responsible citizen and professional with regard to understanding our valuable land and water resources, and their utilization in more scientific and sustainable manner and further managing geohazards

geohazards		
Course type,	Content	Teaching
paper &		hours
Credits		
	Unit I: Introduction and scope of hydrology. Hydrologic cycle	15
	and its components: precipitation, evapo-transpiration,	
	run-off, infiltration and sub-surface movement of water.	
	Vertical distribution of sub-surface water. Types of	
Theory	aquifers, aquifer parameters.	
	Unit II: Aquifers and their types. Darcy's Law and its validity,	15
Paper II	Dupuit's assumptions, Base flow equation. Surface and	
Geohydrolog	sub-surface water interaction. Drinking water quality	
y &	parameters: Physical and Chemical properties of water.	
Environment	Hydrological provinces in India.	
Geology	Unit III: Scope and aims of environmental geology. Biosphere	15
	and man. Geohazards: Earthquakes, volcanism, landslides,	
(04)	floods, flash floods, and snow avalanches. Concepts of	
	geohazard management. Climatology and global	
	environment- Coastal, riverine, desertic, tropical, cold and	
	polar. Green-house effect and global warming.	
[[Unit IV: Elementary idea of soil types. Soil erosion and	15
	conservation. Preliminary idea of environmental	
	implications of mining activities and their remedies.	

	Elementary concept of watershed management. Land reclamation.	
Practical 02	 Section A: Economic Geology & Mineral Exploration: Study of common ores in handspecimen. Study of copper, lead, zinc, iron, gold, phosphorite, magnesite, oil and gas, and coal deposits of India. Laboratory exercises in solving exploration related problems. Section B: Geohydrology: Estimation of hydrologic components, Assessment of different aquifer parameters, Plotting of hydrological provinces in India. 	60

Suggested Reading:

- Valdiya, K.S. (2013). Environmental Geology 2nd Edition. McGraw Hill Education
- Todd, D.K. (1980). Groundwater Hydrology- John Wiley
- Davis, S.N. and De Wiest, R.J.M. (1966): Hydrogeology- JohnWiley
- Freeze, R.A. and Cherry, J.A. (1979): Ground Water- PrenticeHall
- Fetter, C.W. (1990). Applied Hydrogeology- Merill Publishing
- Ragunath, N.M. (1982): Ground Water- Wiley Eastern
- Karanth, K.R. (1987). Groundwater Assessment- Development and Management- Tata McGrawHill
- Alley, W.M. (1993). Regional Ground Water Quality- VNR, NewYork

Suggested Online Link:

- <u>https://www.mooc-list.com/course/natural-resources-sustainable-development-edx</u>
- <u>https://www.mooc-list.com/course/extreme-geological-events-futurelearn</u>
- <u>https://www.mooc-list.com/course/history-ancient-environments-climate-and-life-edx</u>

Semester VI

Paper I: Remote sensing & Elementary Engineering Geology

Course outcome: This course introduces recent technique of remote sensing that has wide application potential in several fields of surveying such as geological, geographical, agricultural, forestry etc. In the present programme, the students will know about the interpretation of aerial remote sensing and its application potential in geological investigations. The students will also be introduced to geological aspects that must be taken care of for any safe and stable geo-engineering activity such as construction, mining, and environmental conservation.

Course type,	Content	Teachin
paper &		g hours
Credits		
Theory Remote sensing & Elementary Engineering Geology (04)	 Unit I: Definition and scope of remote sensing. EM energy and its interaction interactions with atmosphere and earth surface features. Film and digital aerial photography. Types of aerial photographs. Aerial photography mission and stereopair aerial photographs. Tilt in aerial photographs. Scale of aerial photographs. Relief distortions and vertical exaggeration in aerial photographs. Ortho photographs. Unit II: Aerial photo mosaics, their types and utility. Stereoscopic vision in aerial photographs. Pocket and Mirror Stereoscopes. Photo-technical and geotechnical elements of photo-interpretation. Application potential of aerial photographs in land cover, landform, rock type and structure recognition. 	15
	Unit III: Engineering properties of rocks and Soils. Soil and Soil groups of India. Dams and their types. Geological conditions controlling the safety of dams. Causes of dam failure. Geological problem of reservoirs. Bridges and their types. Geological conditions controlling the safety of dams.	15
	Unit IV: Tunnels and their types. Geological conditions controlling the safety of tunnels. Seepage problem in tunnels and role of water table. Landslides: classification, causes and preventative measures.	15

Suggested Reading:

- Valdiya, K.S. (2013). Environmental Geology 2nd Edition. McGraw Hill Education
- Krynine D.P. and Judd W.R. (1957). Principles of Engineering Geology & Geotechnics. McGraw-Hill Book
- Kesavulu, N.C. (2009). A text book of engineering geology. Macmillan P publishing India Ltd.
- Crozier. M.J. (1989). Landslides: causes, consequences and environment. Academic Press.
- Bell, F.G. (1983). Fundamentals of Engineering Geology. Butterworth and Co.
- Lillesand, T.M., Kiefer, R.W., and Chipman (2016). Remote Sensing and Image Interpretation. Wiley.

• Pandey, S.N. (1987). Principles and Application of Photogeology. Wiley Eastern, New Delhi.

Suggested Online Link:

- <u>https://www.classcentral.com/course/swayam-rock-mechanics-and-tunneling-43654</u>
- <u>https://www.classcentral.com/course/swayam-introduction-to-engineering-seismology-43605</u>
- <u>https://www.mooc-list.com/course/reservoir-geomechanics-edx</u>
- <u>https://www.mooc-list.com/course/geology-and-engineering-geology-gongchengdezhixue-edx</u>
- <u>https://www.classcentral.com/course/swayam-photogeology-remote-sensing-45165</u>

boundaries separating them. It will enable them to understand the evolution of terra			
	ime and space.		
Course type,	Content	Teaching	
paper &		hrs	
Credits			
	Unit I: Principle of stratigraphy; fundamentals of litho-, bio-,	15	
	chrono-, and magneto-stratigraphy; Code of stratigraphic		
	nomenclature; Concepts of palaeogeographic		
	reconstructions. Geological Time Scale. Precambrian-		
	Cambrian, Permian-Triassic, and Cretaceous-Tertiary		
	boundaries		
	Unit II: Study of following Precambrian succession: Dharwar,	15	
Theory	Aravalli, Cuddappa, Vindhyan and Delhi Supergroups;		
Theory	Precambrian-Cambrian successions of Uttarakhand;		
Stratigraphy	Unit III: Brief idea about Palaeozoic succession of northwestern	15	
(04)	Himalaya; Triassic of Spiti; Mesozoic type succession of		
(01)	Kutch and Rajasthan; Cretaceous of Tiruchirapalli		
	Unit IV: Stratigraphy of the Indian Gondwana, and Deccan Trap.	15	
	Paleogene-Neogene sequences of northwest Himalaya.		
	Section A: Remote sensing: Studying stereopair aerial	60	
	photographs and using stereoscopes for identifying the photo-		
Practical	technical and geotechnical elements of different landforms, and		
	land use/ land cover classes.		
(02)	Section B: Stratigraphy: Preparation of litho-stratigraphic maps	×.	
	of India showing distribution of important geological formations		
	and Gondwana flora.		

Paper II: Stratigraphy

Course outcome: After completion of this course students will be able to understand fundamentalsofstratigraphy and the geological time scale. They will now be able to correlate and understand about the various age group rocks occurring in India and the

Suggested Reading:

• Wadia, D. (1973). Geology of India. Mc Graw Hill Bookco.

- Krishnan, M.S. (1982). Geology of India and Burma, 6th Edition. CBS Publ.
- Ravindra Kumar (1985). Fundamentals of Historical Geology & Stratigraphy of India. Wiley Eastern.
- Valdiya K.S. (2010). The making of India, McMillan India Pvt ltd.

K

Theory and Practical Examination Pattern

Theory (External) each theory paper carrying maximum marks 75 and shall consist of two sections A and B. Examination duration shall be 02 hours.

1

- a. Section A: Multiple choice questions (MCQ)/true and false/very very short answer type questions.
 Section A will consist of 10 questions, each of one mark)
 Total: 10X1= 10 Marks
- b. Section B: (Short answers type, 200 words)
 Section B will consist of 08 questions, each of 7 marks in which 5 has to be answered.
 Total: 7X5= 35 Marks
- c. Section C: (Long answers type, 500 words) Section C will consist of 3 long answered questions, in which has to be answered, each of 15 marks.
 Total: 2X15= 30 marks

For each theory paper internal assessment shall be conducted periodically (in the form of class tests and/or assignments/ group discussion/ oral presentation/ overall performance) during the semester period. Total marks allotted to internal assessment shall be 25 (Assignments 10 marks, written test/viva 10 marks and regularity 5 marks). The evaluated answer sheets/assignments have to be retained by the Professor In-Charge for the period of six months and can be shown to the students if students want to see the evaluated answer sheets. The marks obtained by the students shall be submitted to the Head of concerned department/ the Principal of the College for uploading onto the University examination portal.

Practical The laboratory work of the students has to be evaluated periodically.

The internal assessment (in the form of lab test, lab record, internal evaluation, assignment/home assignment and attendance) of total 10 marks for each semester shall be conducted during the semester. All kinds of exercises have to be conducted during a semester. Maximum 5 marks of attendance can be given to the students.

In each semester practical examination of 40 marks has to be conducted by two examiners (External and internal) having duration of 4 hours. The total number of students to be examined per batch should not be more than sixty. Marks obtained in the practical examination have to be submitted to the Head of the department/ Principal of the College. The Head of the Department/Principal of the College will make necessary arrangement for uploading the marks onto the University exam portal. The hard copy of the award list from portal has to be submitted to the Controller of Examination, Sri Dev Suman Uttarakhand University, Badshahithaul, New Tehri.

The breakup of marks for practical examination for each semester would be as follows:

Practical exam: 30 Marks (exercises) 05 Marks Viva voce: 05 Marks Lab Record and collection: Sessional (Internal): 10 Marks 50 marks (each semester Total: